中文字幕亚洲色妞精品天堂,99久久精品无码专区,女人被躁到高潮免费视频软件 ,欧美xxxx做受欧美88

技術(shù)支持

深度學(xué)習(xí)(二)

  • 來源:光虎


深度學(xué)習(xí)結(jié)構(gòu)模型



特點


區(qū)別于傳統(tǒng)的淺層學(xué)習(xí),深度學(xué)習(xí)的不同在于:


(1)強調(diào)了模型結(jié)構(gòu)的深度,通常有5層、6層,甚至10多層的隱層節(jié)點;

 

(2)明確了特征學(xué)習(xí)的重要性。也就是說,通過逐層特征變換,將樣本在原空間的特征表示變換到一個新特征空間,從而使分類或預(yù)測更容易。與人工規(guī)則構(gòu)造特征的方法相比,利用大數(shù)據(jù)來學(xué)習(xí)特征,更能夠刻畫數(shù)據(jù)豐富的內(nèi)在信息。  


通過設(shè)計建立適量的神經(jīng)元計算節(jié)點和多層運算層次結(jié)構(gòu),選擇合適的輸人層和輸出層,通過網(wǎng)絡(luò)的學(xué)習(xí)和調(diào)優(yōu),建立起從輸入到輸出的函數(shù)關(guān)系,雖然不能100%找到輸入與輸出的函數(shù)關(guān)系,但是可以盡可能地逼近現(xiàn)實的關(guān)聯(lián)關(guān)系。使用訓(xùn)練成功的網(wǎng)絡(luò)模型,就可以實現(xiàn)我們對復(fù)雜事務(wù)處理的自動化要求。  


深度學(xué)習(xí)典型模型

典型的深度學(xué)習(xí)模型有卷積神經(jīng)網(wǎng)絡(luò)( convolutional neural network)、DBN和堆棧自編碼網(wǎng)絡(luò)(stacked auto-encoder network)模型等,下面對這些模型進行描述。 


卷積神經(jīng)網(wǎng)絡(luò)模型




在無監(jiān)督預(yù)訓(xùn)練出現(xiàn)之前,訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)通常非常困難,而其中一個特例是卷積神經(jīng)網(wǎng)絡(luò)。卷積神經(jīng)網(wǎng)絡(luò)受視覺系統(tǒng)的結(jié)構(gòu)啟發(fā)而產(chǎn)生。第一個卷積神經(jīng)網(wǎng)絡(luò)計算模型是在Fukushima的神經(jīng)認知機中提出的,基于神經(jīng)元之間的局部連接和分層組織圖像轉(zhuǎn)換,將有相同參數(shù)的神經(jīng)元應(yīng)用于前一層神經(jīng)網(wǎng)絡(luò)的不同位置,得到一種平移不變神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)形式。后來,Le Cun等人在該思想的基礎(chǔ)上,用誤差梯度設(shè)計并訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò),在一些模式識別任務(wù)上得到優(yōu)越的性能。至今,基于卷積神經(jīng)網(wǎng)絡(luò)的模式識別系統(tǒng)是最好的實現(xiàn)系統(tǒng)之一,尤其在手寫體字符識別任務(wù)上表現(xiàn)出非凡的性能。


深度信任網(wǎng)絡(luò)模型


DBN可以解釋為貝葉斯概率生成模型,由多層隨機隱變量組成,上面的兩層具有無向?qū)ΨQ連接,下面的層得到來自上一層的自頂向下的有向連接,最底層單元的狀態(tài)為可見輸入數(shù)據(jù)向量。DBN由若干2F結(jié)構(gòu)單元堆棧組成,結(jié)構(gòu)單元通常為RBM(Restricted Boltzmann Machine,受限玻爾茲曼機)。堆棧中每個RBM單元的可視層神經(jīng)元數(shù)量等于前一RBM單元的隱層神經(jīng)元數(shù)量。根據(jù)深度學(xué)習(xí)機制,采用輸入樣例訓(xùn)練第一層RBM單元,并利用其輸出訓(xùn)練第二層RBM模型,將RBM模型進行堆棧通過增加層來改善模型性能。在無監(jiān)督預(yù)訓(xùn)練過程中,DBN編碼輸入到頂層RBM后,解碼頂層的狀態(tài)到最底層的單元,實現(xiàn)輸入的重構(gòu)。RBM作為DBN的結(jié)構(gòu)單元,與每一層DBN共享參數(shù)。


堆棧自編碼網(wǎng)絡(luò)模型


堆棧自編碼網(wǎng)絡(luò)的結(jié)構(gòu)與DBN類似,由若干結(jié)構(gòu)單元堆棧組成,不同之處在于其結(jié)構(gòu)單元為自編碼模型( auto-en-coder)而不是RBM。自編碼模型是一個兩層的神經(jīng)網(wǎng)絡(luò),第一層稱為編碼層,第二層稱為解碼層。 


深度學(xué)習(xí)訓(xùn)練過程

2006年,Hinton提出了在非監(jiān)督數(shù)據(jù)上建立多層神經(jīng)網(wǎng)絡(luò)的一個有效方法,具體分為兩步:首先逐層構(gòu)建單層神經(jīng)元,這樣每次都是訓(xùn)練一個單層網(wǎng)絡(luò);當所有層訓(xùn)練完后,使用wake-sleep算法進行調(diào)優(yōu)。


將除最頂層的其他層間權(quán)重變?yōu)殡p向的,這樣最頂層仍然是一個單層神經(jīng)網(wǎng)絡(luò),而其他層則變?yōu)榱藞D模型。向上的權(quán)重用于“認知”,向下的權(quán)重用于“生成”。然后使用wake-sleep算法調(diào)整所有的權(quán)重。讓認知和生成達成一致,也就是保證生成的最頂層表示能夠盡可能正確地復(fù)原底層的節(jié)點。比如頂層的一個節(jié)點表示人臉,那么所有人臉的圖像應(yīng)該激活這個節(jié)點,并且這個結(jié)果向下生成的圖像應(yīng)該能夠表現(xiàn)為一個大概的人臉圖像。wake-sleep算法分為醒( wake)和睡(sleep)兩個部分。 


wake階段:認知過程,通過外界的特征和向上的權(quán)重產(chǎn)生每一層的抽象表示,并且使用梯度下降修改層間的下行權(quán)重。 


sleep階段:生成過程,通過頂層表示和向下權(quán)重,生成底層的狀態(tài),同時修改層間向上的權(quán)重。


自下上升的非監(jiān)督學(xué)習(xí)


就是從底層開始,一層一層地往頂層訓(xùn)練。采用無標定數(shù)據(jù)(有標定數(shù)據(jù)也可)分層訓(xùn)練各層參數(shù),這一步可以看作是一個無監(jiān)督訓(xùn)練過程,這也是和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)區(qū)別最大的部分,可以看作是特征學(xué)習(xí)過程。具體的,先用無標定數(shù)據(jù)訓(xùn)練第一層,訓(xùn)練時先學(xué)習(xí)第一層的參數(shù),這層可以看作是得到一個使得輸出和輸入差別最小的三層神經(jīng)網(wǎng)絡(luò)的隱層,由于模型容量的限制以及稀疏性約束,使得得到的模型能夠?qū)W習(xí)到數(shù)據(jù)本身的結(jié)構(gòu),從而得到比輸入更具有表示能力的特征;在學(xué)習(xí)得到n-1層后,將n-1層的輸出作為第n層的輸入,訓(xùn)練第n層,由此分別得到各層的參數(shù)。


自上向下的監(jiān)督學(xué)習(xí)


就是通過帶標簽的數(shù)據(jù)去訓(xùn)練,誤差自頂向下傳輸,對網(wǎng)絡(luò)進行微調(diào)。基于第一步得到的各層參數(shù)進一步優(yōu)調(diào)整個多層模型的參數(shù),這一步是一個有監(jiān)督訓(xùn)練過程。第一步類似神經(jīng)網(wǎng)絡(luò)的隨機初始化初值過程,由于第一步不是隨機初始化,而是通過學(xué)習(xí)輸入數(shù)據(jù)的結(jié)構(gòu)得到的,因而這個初值更接近全局最優(yōu),從而能夠取得更好的效果。所以深度學(xué)習(xí)的良好效果在很大程度上歸功于第一步的特征學(xué)習(xí)的過程。


計算機視覺應(yīng)用


計算機視覺中比較成功的深度學(xué)習(xí)的應(yīng)用,包括人臉識別、圖像問答、物體檢測、物體跟蹤。





【來源:網(wǎng)絡(luò)】



http://gilere.com.cn   光虎光電科技(天津)有限公司

日日麻批免费40分钟无码| 日本公与熄乱理在线播放| 亚洲欧洲日本综合aⅴ在线| 成年片免费观看网站| 精品国产aⅴ无码一区二区| 韩国精品一区二区三区四区| 久久精品国产色蜜蜜麻豆| 无码人妻av一区二区三区波多野| 少妇无码吹潮| 成年女人a级毛片免费观看| 精品国精品国产自在久国产应用| 免费人成视频在线观看网站| 亚洲欧洲免费无码| 天码av无码一区二区三区四区 | 久久99精品国产麻豆不卡| 欧美精品久久天天躁| 午夜精品久久久久久久99热| s级爆乳玩具酱国产vip皮裤| 日韩不卡手机视频在线观看| 国产成人精品一区二区3| 无码毛片视频一区二区本码| 国产在线视频一区二区三区| 日韩av无码久久一区二区| 久久久久亚洲精品天堂| 国产乱色精品成人免费视频| 国产午夜毛片v一区二区三区| 久久亚洲精品无码av| 尤物网址在线观看| 大地资源中文在线观看官网第二页| 国产女人好紧好爽| 国产色xx群视频射精| 夜夜高潮天天爽欧美| 波多野结衣av一区二区全免费观看| 国产精品激情av久久久青桔| 一二三四在线观看免费视频| 欧美黑人粗暴多交高潮水最多| 99re6在线视频精品免费下载| 男女做爰猛烈啪啪吃奶动 | 国产精品厕所| 精品国内自产拍在线观看视频| 色综合久久中文字幕无码|